skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gupta, Khushi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In military operations, real-time monitoring of soldiers’ health is essential for ensuring mission success and safeguarding personnel, yet such systems face challenges related to accuracy, security, and resource efficiency. This research addresses the critical need for secure, real-time monitoring of soldier vitals in the field, where operational security and performance are paramount. The paper focuses on implementing a machine-learning-based system capable of predicting the health states of soldiers using vitals such as heart rate (HR), respiratory rate (RESP), pulse, and oxygen saturation SpO2. A comprehensive pipeline was developed, including data preprocessing, the addition of noise, and model evaluation, to identify the best-performing machine learning algorithm. The system was tested through simulations to ensure real-time inference on real-life data, with reliable and accurate predictions demonstrated in dynamic environments. The gradient boosting model was selected due to its high accuracy, robustness to noise, and ability to handle complex feature interactions efficiently. Additionally, a lightweight cryptographic security system with a 16-byte key was integrated to protect sensitive health and location data during transmission. The results validate the feasibility of deploying such a system in resource-constrained field conditions while maintaining data confidentiality and operational security. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  2. Mosquito-borne diseases continue to pose a great threat to global public health systems due to increased insecticide resistance and climate change. Accurate vector identification is crucial for effective control, yet it presents significant challenges. IDX - an automated computer vision-based device capable of capturing mosquito images and outputting mosquito species ID has been deployed globally resulting in algorithms currently capable of identifying 53 mosquito species. In this study, we evaluate deployed performance of the IDX mosquito species identification algorithms using data from partners in the Southeastern United States (SE US) and Papua New Guinea (PNG) in 2023 and 2024. This preliminary assessment indicates continued improvement of the IDX mosquito species identification algorithms over the study period for individual species as well as average regional accuracy with macro average recall improving from 55.3 % [Confidence Interval (CI) 48.9, 61.7] to 80.2 % [CI 77.3, 84.9] for SE US, and 84.1 % [CI 75.1, 93.1] to 93.6 % [CI 91.6, 95.6] for PNG using a CI of 90 %. This study underscores the importance of algorithm refinement and dataset expansion covering more species and regions to enhance identification systems thereby reducing the workload for human experts, addressing taxonomic expertise gaps, and improving vector control efforts. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  3. The proliferation of software tools and automated techniques in digital forensics has brought about some controversies regarding bias and fairness. Different biases exist and have been proven in some civil and criminal cases. In our research, we analyze and discuss these biases present in software tools and automation systems used by law enforcement organizations and in court proceedings. Furthermore, we present real-life cases and scenarios where some of these biases have determined or influenced these cases. We were also able to provide recommendations for reducing bias in software tools, which we hope will be the foundation for a framework that reduces or eliminates bias from software tools used in digital forensics. In conclusion, we anticipate that this research can help increase validation in digital forensics software tools and ensure users' trust in the tools and automation techniques. 
    more » « less